Basic markers of T cell populations in human PBMC

Human peripheral blood mononuclear cells (PBMC) are comprised of complex populations of T cells, B cells, NK cells, monocytes, and dendritic cells.  In addition, there are more complicated cell types such as NKT cells that are thought of as T cells that share many properties of NK cells.  Within all of these basic populations are many functionally unique subsets.  Because of the diversity of populations in PBMC, flow cytometry represents the best method for studying functional and phenotypic properties of these cell subsets.  In the next few blog posts, I will discuss selection of markers for studying PBMC populations using flow cytometry and the best way to arrange these markers in flow cytometry staining panels.

The PBMC cell type I have the most experience with characterizing is T cells.  CD3, a T cell specific marker, is necessary to differentiate T cells from other populations, simply because CD4 and CD8 can be expressed by other cell types.  CD8 can be expressed on NK cells, while CD4 can be expressed on populations of monocytes and dendritic cells.  CD4 and CD8 are also necessary markers for identification of these two major T cell populations.

CD4 and CD8 T cells are most simply classified as naïve or antigen experienced populations including central memory, effector memory and effectors.  Central memory and effector memory populations are known to differ in their effector functions and ability to home to different anatomical sites.  Two markers are necessary to differentiate naive, central memory, effector memory and effector T cell populations present in PBMC.

The first is CD45, a protein tyrosine phosphatase regulating src-family kinases, is expressed on all hematopoietic cells.  CD45 can be expressed as one of several isoforms by alternative splicing of exons that comprise the extracellular domain. CD45RA is expressed on naïve T cells, as well as the effector cells in both CD4 and CD8.  After antigen experience, central and effector memory T cells gain expression of CD45RO and lose expression of CD45RA.  Thus either CD45RA or CD45RO is used to generally differentiate the naïve from memory populations.

However, differentiation between central and effector memory populations and between naïve and effector populations can be achieved by adding a second marker.   There are several markers that have been used for this purpose and these tend to mark these populations at slightly different stages of the differentiation pathway that is thought to occur in T cells as they change from central to effector memory cells.  The chemokine receptor CCR7 is considered the gold standard for this discrimination, and the lymph node homing receptor CD62L is a close second choice.  Naïve and central memory cells express these receptors in order to migrate to secondary lymphoid organs, while the absence of these receptors allows for effector memory and effector cells to accumulate in peripheral tissues.  CCR7 has been classically thought to be difficult to stain for due to low expression levels, and as a result I have never used it.  However, a recent review article pointed out that a new brighter staining antibody to CCR7 has been developed (clone 150503), and is something I hope to test in the near future.  CD62L has generally been my marker of choice, however CD62L expression is lost following density gradient centrifugation, cryopreservation, TCR ligation or activation with PMA/ionomycin.  Thus CD62L as a marker is best utilized following overnight culturing subsequent to thawing cryopreserved cells.  Other potential markers are CD27 and CD28 which are also more highly expressed by the central memory and naive populations.  However, it is important to note that each of these markers, CCR7, CD62L, CD27, and CD28, marks slightly different populations of cells and care must be taken when making comparisons between populations defined by different markers for assessing frequencies or functions.

In summary, naïve T cells are CD45RA+CD45ROCCR7+CD62L+, central memory T cells are CD45RACD45RO+CCR7+CD62L+, effector memory T cells are CD45RACD45RO+CCR7CD62L, and effector cells are CD45RA+CD45ROCCR7CD62L.  Thus, CD3, CD4, CD8, CD45RA or CD45RO, and CCR7 or CD62L or CD27, are a great starting point for designing flow cytometry panels for the assessment of T cells present in human PBMC.  T cells populations, however, are much more complex, and may be further classified by helper subtypes and activation status, which will be discussed in a later blog.

describe the image

The use of CD45RA and CD62L to differentiate naive, central memory, effector memory and effector T cell populations present in PBMC.  Naïve CD4 and CD8 T cells are CD45RA+CD45ROCCR7+CD62L+ (B, F), central memory T cells are CD45RA- CD45RACD45RO+CCR7+CD62L+ (A, E), effector memory T cells are CD45RACD45RO+CCR7CD62L (C, G), and effector cells are CD45RA+CD45ROCCR7CD62L (D, H).

 

Further Reading:

Central memory and effector memory T cell subsets: function, generation, and maintenance.   Sallusto F, Geginat J, Lanzavecchia A. Annu Rev Immunol. 2004;22:745-63.

The Promise of Induced Pluripotent Stem Cells

Human embryonic stem cells (hESCs) hold great potential for cell replacement therapies, where cells are lost due to disease and/or injury. During the last decade, we have witnessed the development of the induced pluripotent stem cell (iPSC) technology, which revolutionized the stem cell field, as well as the regenerative medicine. Since the source of the reprogrammed cells (e.g., fibroblasts, keratinocytes, etc.) as part of the generation of iPSCs is readily accessible, this opened up an entirely new chapter in regenerative medicine by significantly reducing immune rejection problems after transplantation. Furthermore, by taking somatic cells directly from patients, we now have the ability to create disease models (also know as “disease in a dish”) for many conditions that were not possible before. As of today, numerous diseases have been modeled using iPSCs and many researchers are exploring the possibility of utilizing iPSC-derived cells for cell replacement therapy.

One of the pioneers of the iPSC work, Shinya Yamanaka, was awarded the Nobel Prize in Physiology or Medicine (together with John B. Gurdon) this year. Considering that Dr. Yamanaka’s first study related to iPSCs was published in 2006, it’s easy to appreciate the enormous impact that this technology has created as substantiated by the decision of the Nobel Prize committee. If we look back at the chronological events, the initial report from the Yamanaka group using mouse fibroblast and 4 transcription factors (i.e., Oct4, Sox2, Klf4 and c-Myc) to create iPSCs was published in 2006 (Takahashi and Yamanaka, 2006), followed by the demonstration in 2007 (Takahashi et al., 2007) that a similar approach was applicable for human fibroblasts, and by introducing a defined set of transcription factors, human iPSCs can be generated. On the same day Yamanaka published his human iPSC paper, Jamie Thomson’s group also demonstrated the generation of iPSCs from human cells using a different set of factors (Yu et al., 2007).

describe the imageEven though, iPSCs can be generated reproducibly, the efficiency of the reprograming remains low (i.e., around 1% using the original method). Furthermore, the initial generation of iPSCs utilized either retroviruses or lentiviruses, which both integrate into the host genome and might cause insertional mutagenesis, collectively creating a risk for translational applications. However, the beauty of the iPSC technology is its simplicity and reproducibility. Since 2007, iPSCs have been in the central focus of stem cell research and regenerative medicine, and researchers throughout the world have made a number of improvements to Yamanaka’s original protocol. Today, we have safer and more efficient methods for generation human iPSCs for disease modeling or cell replacement therapies, and by the look of how much has been achieved so far, the technology is only going to get better and more proficient. Considering that human embryonic stem cell derived approaches have been successfully used at the clinical level for cell replacement therapies, there is no doubt that iPSCs will eventually prove to be the ultimate source for regenerative medicine in the future.

Types of immune cells present in human PBMC

When peripheral whole blood is drawn for human immune system studies, it is often processed to remove red blood cells by density gradient centrifugation. Most commonly this method uses Ficoll Paque, a solution of high molecular weight sucrose polymers, a product of GE Healthcare Ltd.  Ficoll separates whole blood into two fractions above and below the density of 1.077g/ml.

Peripheral blood mononuclear cells (PBMC) are the populations of immune cells that remain at the less dense, upper interface of the Ficoll layer, often referred to as the buffy coat and are the cells collected when the  Ficoll fractionation method is used.

Erythrocytes (red blood cells) and polymorphonuclear cells (PMNs) which include neutrophils and eosinophils are generally removed during this fractionation as they are denser then 1.077g/ml.  Basophils, however can be greater or less dense then 1.077g/ml and thus may be present to a small degree in the less dense PBMC fraction.

PBMCs include lymphocytes (T cellsB cells, and NK cells), monocytes, and dendritic cells.  In humans, the frequencies of these populations vary across individuals.  In my experience as well as that of others, lymphocytes are typically in the range of 70 – 90% of PBMCs, monocytes range from 10 – 30% of PBMCs, while dendritic cells are rare, being only 1 – 2% of PBMCs.  The frequencies of cell types within the lymphocyte population include 70 – 85% CD3+ T cells (45 – 70% of PBMC), 5 – 20% B cells (up to 15% of PBMC), and 5 – 20% NK cells (up to 15% of PBMC).

The CD3+ compartment is composed of CD4 (25 – 60% of PBMC) and CD8 T cells (5 – 30% of PBMC), in a roughly 2:1 ratio.  Both CD4 and CD8 T cells can be further subsetted into naïve, and the antigen-experienced central memory, effector memory, and effector subtypes that exist in resting or activated states.  Multiple markers can be used to identify these compartments to varying similarities and thus the frequencies reported by people using different markers may vary.

CD4 T cells are known as helper T cells and can be further classified into various functional subtypes based on the expression profiles of specific cytokines, surface markers, or transcription factors.  These include regulatory T cells, TH1, TH2, and TH17 cells as well as other described subpopulations such as TH9, follicular helper, and TR1 types.  These classifications however will certainly become more complex in the future, as recently the cytotoxic CD8 T cell compartment has been to shown to be extremely heterogenous in marker expression and function and may be comprised of roughly 200 functional phenotypes.

Dendritic cells 2

Circulating B cells include transitional, naïve, and memory subtypes as well as plasmablasts, all of which can be found at varying populations in peripheral blood.  Circulating dendritic cells include plasmacytoid dendritic cells as well as myeloid derived dendritic cells.  Circulating monocytes have been described as either being classical monocytes or nonclassical CD16+ proinflammatory monocytes, which comprise up to 10% of the monocytes in peripheral blood and have unique functions compared with classical monocytes.

Human immune system studies rely heavily on the phenotypic and functional assessments of PBMCs.  In order to take advantage of PBMCs for human immune studies, it is important to know what populations are represented in peripheral blood and how PBMC populations differ in distribution and function from tissue immune cells.  Finally it is critical to become familiar with the identifying surface and intracellular markers and the types of assays best suited for human PBMC studies.  The markers most suitable for identification of the major immune populations in human PBMC using flow cytometry will be the topic of the next blog.

Research digest: Interesting new findings in cancer research

 

  • cancer researchThe immune system is the body’s primary defender against cancer. In a recent article in Science magazine, Dr. Senovilla and colleagues report a novel mechanism that cells of the immune system use to identify carcinogenic cells.  They show that a protein called calreticulin, which normally resides in the endoplasmic reticulum, is present on the surface of polyploid (extra chromosomes) cells. This serves as a beacon for immune cells to destroy these cells and ultimately lead to the selection against them.
  • Mammography (low dose x-ray imaging) is the most common breast cancer imaging technology, for early screening although many limitations exist.  For example, it is estimated that the about 20% of cancers go undetected by mammograms leading to false negative diagnosis.  Another issue with mammography is that the technology uses radiation and over time and repeated exposure could actually increase the risk of cancer.  Computed tomography (CT) can reduce some of the radiation exposure but at the cost of lowering resolution of the images making it harder to detect some cancers.  Dr. Zhao and colleagues from the California NanoSystems Institute at UCLA devised a new method for 3D imaging using phase contrast x-ray in combination with a novel image reconstruction program.  Researchers report a 74% reduction in radiation dosing, image acquisition time, increased resolution and contrast.
  • A well-documented phenomenon is the result of chronic inflammation to induce carcinogenesis.  Inflammatory cells secrete cytotoxic molecules that are intended to kill cancerous cells but during chronic inflammation, repeated exposure to cytotoxic molecules can lead to DNA damage.  This damage can result in oncogene activation or tumor suppressor gene inhibition.  Researchers at the University of North Carolina at Chapel Hill, Chapel Hill show that colitis (inflammation of the large intestine, colon) can also lead to imbalances in the natural microflora.  Imbalances of certain microorganism with genotoxic (DNA damage) ability can lead to DNA damage in the intestine and initiate carcinogenesis.

 

  • Resistance to cancer development varies greatly from species to species.  Anti-cancer adaptations lend cells the ability to deal with genomic alterations potentially leading to carcinogenesis.  Subterranean rodents, blind mole rats, Spalax (BMR) display resistance to cancer development.   Researchers at the Department of Genetics and Complex Diseases at Harvard School of Public Health found that cells from BMR animals after multiple replication cycles perform concerted cell death in response to hyperproliferation as an anti-cancer mechanism.
  • Chemotherapeutic, Doxorubicin is a common treatment option for a wide range of cancers.  One of the most serious side effects is cardiomyopathy (damage to heart muscle) by a mechanism that up to now remained unclear.  Doxorubicin inhibits cellular replication by binding DNA and inhibiting the function of the DNA detangling enzymes, topoisomerase-II-α and –β (Top2-α and –β) and Top2-α is considered a marker of cell proliferation and thus this drugs target for cancer treatment.  Dr. Zhang and colleagues show that Top2-β, the other target of this drug is expressed on heart tissue and is inhibited by Doxurubucin providing an explanation for its cardiotoxicity.

Research digest: Interesting new findings in cancer research

 

  • The immune system is the body’s primary defender against cancer. In a recent article in Science magazine, Dr. Senovilla and colleagues report a novel mechanism that cells of the immune system use to identify carcinogenic cells.  They show that a protein called calreticulin, which normally resides in the endoplasmic reticulum, is present on the surface of polyploid (extra chromosomes) cells. This serves as a beacon for immune cells to destroy these cells and ultimately lead to the selection against them.
  • Mammography (low dose x-ray imaging) is the most common breast cancer imaging technology, for early screening although many limitations exist.  For example, it is estimated that the about 20% of cancers go undetected by mammograms leading to false negative diagnosis.  Another issue with mammography is that the technology uses radiation and over time and repeated exposure could actually increase the risk of cancer.  Computed tomography (CT) can reduce some of the radiation exposure but at the cost of lowering resolution of the images making it harder to detect some cancers.  Dr. Zhao and colleagues from the California NanoSystems Institute at UCLA devised a new method for 3D imaging using phase contrast x-ray in combination with a novel image reconstruction program.  Researchers report a 74% reduction in radiation dosing, image acquisition time, increased resolution and contrast.
  • A well-documented phenomenon is the result of chronic inflammation to induce carcinogenesis.  Inflammatory cells secrete cytotoxic molecules that are intended to kill cancerous cells but during chronic inflammation, repeated exposure to cytotoxic molecules can lead to DNA damage.  This damage can result in oncogene activation or tumor suppressor gene inhibition.  Researchers at the University of North Carolina at Chapel Hill, Chapel Hill show that colitis (inflammation of the large intestine, colon) can also lead to imbalances in the natural microflora.  Imbalances of certain microorganism with genotoxic (DNA damage) ability can lead to DNA damage in the intestine and initiate carcinogenesis.
  • Resistance to cancer development varies greatly from species to species.  Anti-cancer adaptations lend cells the ability to deal with genomic alterations potentially leading to carcinogenesis.  Subterranean rodents, blind mole rats, Spalax (BMR) display resistance to cancer development.   Researchers at the Department of Genetics and Complex Diseases at Harvard School of Public Health found that cells from BMR animals after multiple replication cycles perform concerted cell death in response to hyperproliferation as an anti-cancer mechanism.
  • Chemotherapeutic, Doxorubicin is a common treatment option for a wide range of cancers.  One of the most serious side effects is cardiomyopathy (damage to heart muscle) by a mechanism that up to now remained unclear.  Doxorubicin inhibits cellular replication by binding DNA and inhibiting the function of the DNA detangling enzymes, topoisomerase-II-α and –β (Top2-α and –β) and Top2-α is considered a marker of cell proliferation and thus this drugs target for cancer treatment.  Dr. Zhang and colleagues show that Top2-β, the other target of this drug is expressed on heart tissue and is inhibited by Doxurubucin providing an explanation for its cardiotoxicity.

 

Upcoming cancer research conferences you don’t want to miss!

Deadlines are approaching in December for these upcoming AACR conferences.  Register before it’s too late! 

breast cancer cell cytoskeleton

Metastasis (the spread of cancer cells from the original tumor to distant organs) is the main cause of death from cancer.  Want to hear about the latest research from experts on tumor metastasis? Consider attending the “Tumor Invasion and Metastasis” conference in San Diego, CA.

Tumor Invasion and Metastasis

January 20-23, 2013 in San Diego, CA

Advance registration deadline: Dec. 10th, 2012

Interested in networking with Japanese scientists in translational and basic cancer research? The “Ninth AACR-JCA Joint Conference: Breakthroughs in Basic and Translational Cancer Research” aims to connect prominent American and Japanese cancer researchers with the goals of fostering collaborations as well as highlighting their exceptional collective research.

Ninth AACR-JCA Joint Conference: Breakthroughs in Basic and Translational Cancer Research

Feb. 21-25, 2013 in Maui, HI

Advance registration deadline: Dec. 17th, 2012

 

The upcoming AARC Annual Meeting in Washington DC will once again bring together tens of thousands cancer researchers from all over the world.  Register now! to witness cutting-edge research from all fields of cancer studies.

AACR Annual Meeting 2013

April 6-10, 2013 in Washington, DC

Early registration deadline: Dec. 21st, 2012

 

Note: AACR membership is required to attend these conferences.

 

Upcoming cancer research conferences you don’t want to miss!

Deadlines are approaching in December for these upcoming AACR conferences.  Register before it’s too late! 

breast cancer cell cytoskeleton

Metastasis (the spread of cancer cells from the original tumor to distant organs) is the main cause of death from cancer.  Want to hear about the latest research from experts on tumor metastasis? Consider attending the “Tumor Invasion and Metastasis” conference in San Diego, CA.

Tumor Invasion and Metastasis

January 20-23, 2013 in San Diego, CA

Advance registration deadline: Dec. 10th, 2012

Interested in networking with Japanese scientists in translational and basic cancer research? The “Ninth AACR-JCA Joint Conference: Breakthroughs in Basic and Translational Cancer Research” aims to connect prominent American and Japanese cancer researchers with the goals of fostering collaborations as well as highlighting their exceptional collective research.

Ninth AACR-JCA Joint Conference: Breakthroughs in Basic and Translational Cancer Research

Feb. 21-25, 2013 in Maui, HI

Advance registration deadline: Dec. 17th, 2012

 

The upcoming AARC Annual Meeting in Washington DC will once again bring together tens of thousands cancer researchers from all over the world.  Register now! to witness cutting-edge research from all fields of cancer studies.

AACR Annual Meeting 2013

April 6-10, 2013 in Washington, DC

Early registration deadline: Dec. 21st, 2012

 

Note: AACR membership is required to attend these conferences.